Bubble
Synopsis
Variout styles to write bubble sort.
Description
Bubble sort is a classic (albeit not the most efficient) technique to sort lists of values. We present here several styles to implement bubble sort. Also see sort for a more efficient library function for sorting.
Examples
import List;
@synopsis{sort1: uses list indexing, a for-loop and a (complex) assignment}
list[int] sort1(list[int] numbers) {
if (size(numbers) > 0) {
for (int i <- [0 .. size(numbers)-1]) {
if (numbers[i] > numbers[i+1]) {
// interesting destructuring bind:
<numbers[i], numbers[i+1]> = <numbers[i+1], numbers[i]>;
return sort1(numbers);
}
}
}
return numbers;
}
@synopsis{sort2 uses list matching, a switch and recursion instead of assignment}
list[int] sort2(list[int] numbers) {
switch(numbers){
case [*int nums1, int p, int q, *int nums2]:
if (p > q) {
return sort2(nums1 + [q, p] + nums2);
} else {
fail;
}
default: return numbers;
}
}
@synopsis{sort3: uses list matching, while and an assignment}
list[int] sort3(list[int] numbers) {
while ([*int nums1, int p, *int nums2, int q, *int nums3] := numbers && p > q)
numbers = nums1 + [q] + nums2 + [p] + nums3;
return numbers;
}
@synopsis{sort4: uses list matching, solve, list concatentation, and assignment}
list[int] sort4(list[int] numbers) {
solve (numbers) {
if ([*int nums1, int p, *int nums2, int q, *int nums3] := numbers && p > q)
numbers = nums1 + [q] + nums2 + [p] + nums3;
}
return numbers;
}
@synopsis{sort5: using recursion instead of iteration, and splicing instead of concat}
list[int] sort5([*int nums1, int p, *int nums2, int q, *int nums3]) {
if (p > q)
return sort5([*nums1, q, *nums2, p, *nums3]);
else
fail sort5;
}
default list[int] sort5(list[int] x) = x;
@synopsis{sort6: inlines the condition into a when, and uses overloading with a default function.}
list[int] sort6([*int nums1, int p, *int nums2, int q, *int nums3])
= sort5([*nums1, q, *nums2, p, *nums3])
when p > q;
default list[int] sort6(list[int] x) = x;
bool isSorted(list[int] lst) = !any(int i <- index(lst), int j <- index(lst), (i < j) && (lst[i] > lst[j]));
test bool sorted1a() = isSorted([]);
test bool sorted1b() = isSorted([10]);
test bool sorted1c() = isSorted([10, 20]);
test bool sorted1d() = isSorted([-10, 20, 30]);
test bool sorted1e() = !isSorted([10, 20, -30]);
test bool sorted2(list[int] lst) = isSorted(sort2(lst));
test bool sorted3(list[int] lst) = isSorted(sort3(lst));
test bool sorted4(list[int] lst) = isSorted(sort4(lst));
test bool sorted5(list[int] lst) = isSorted(sort5(lst));
test bool sorted6(list[int] lst) = isSorted(sort6(lst));
sort1
is a classic, imperative style, implementation of bubble sort: it iterates over consecutive pairs of elements and
when a not-yet-sorted pair is encountered, the elements are exchanged, and sort1
is applied recursively to the whole list.
sort2
uses list matching and consists of a switch with two cases:
- A case matching a list with two consecutive elements that are unsorted. Observe that when the pattern of a case matches, the case as a whole can still fail.
- A default case.
sort3
also uses list matching but in a more declarative style: As long as there are unsorted elements in the list (possibly with intervening elements), exchange them.
sort4
is identical to sort3
, except that the shorter *
-notation for list variables is used and that the type declaration for the
the non-list variables has been omitted.
sort5
uses tail recursion to reach a fixed point instead of a while loop. One alternative matches lists with out-of-order elements, while the default alternative returns the list if no out-of-order elements are found.
Let's put them to the test:
rascal>L = [9,8,7,6,5,4,3,2,1];
list[int]: [9,8,7,6,5,4,3,2,1]
rascal>sort1(L);
list[int]: [1,2,3,4,5,6,7,8,9]
rascal>sort2(L);
list[int]: [1,2,3,4,5,6,7,8,9]
rascal>sort3(L);
list[int]: [1,2,3,4,5,6,7,8,9]
rascal>sort4(L);
list[int]: [1,2,3,4,5,6,7,8,9]
rascal>sort5(L);
list[int]: [1,2,3,4,5,6,7,8,9]